
Mathematical Modeling and Analysis

Multilevel Accelerated Grid
Optimization
Markus Berndt, berndt@lanl.gov
Mikhail Shashkov, shashkov@lanl.gov

The quality of numerical simulations of pro-
cesses that are modeled by partial differential
equations strongly depends on the quality of the
mesh that is used for their discretization. This
quality is affected, for example, by mesh smooth-
ness, or discretization error. To improve the mesh,
a functional that is in general nonlinear must be
minimized. This minimization is constrained by
the validity of the mesh, since no mesh folding is
allowed. Classical optimization techniques, such
as nonlinear CG, or Gauss-Seidel steepest de-
scent, perform very poorly on this class of min-
imization problems. We introduce a new min-
imization technique that utilizes the underlying
geometry of the problem. By coarsening the mesh
successively, in a multilevel-like fashion, mini-
mizing appropriate coarse grid quality measures,
and interpolating finer meshes from coarser ones,
a more rapid movement of fine mesh points re-
sults, and the overall convergence of the mini-
mization procedure is accelerated (see [1]).

We first describe the coarsening strategy. In an
initial step in Delaunay coarsening [2], the list of
vertices is reordered in such a way that all bound-
ary vertices come first. In a loop over this list of
vertices, the current vertex is added to the list of
coarse vertices and its neighbors are deleted from
the list of vertices. Hence, initially the boundary
is coarsened, and then the interior. As a slight
modification of this algorithm, we consider such
boundary vertices first that are necessary to prop-
erly resolve the shape of the domain. An exam-
ple for such vertices are the four corner vertices
of a square. The resulting list of coarse vertices
is then triangulated using a Delaunay algorithm
(e.g. [3]).

Interpolating a grid from a coarser one is
achieved by injection in the case of coarse ver-
tices that are also fine vertices. All other fine ver-
tices are interpolated using their barycentric co-

ordinates with respect to their underlying coarse
triangle as interpolation weights. In this proce-
dure, the resulting grid might be tangled in some
places. We handle this situation by using the un-
tangling procedure described in [4].

For an approximate minimization procedure,
we will call it relaxation, we use a few iterations
standard gradient based optimizer, such as Gauss-
Seidel steepest descent.

Grid after 500 iterations of CG (top) and after
two cycles of multilevel optimization procedure
(bottom)

The three components restriction, interpola-
tion, and relaxation are combined to yield a
multigrid-style V-cycle iteration (see [5]). In the
figure, we show the final grid after 500 itera-
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tions of Gauss-Seidel steepest descent (top), and
the final grid after three iterations of our new V-
cycle optimization procedure (bottom). The ob-
jective was to minimize the approximation error
of a given function with a steep gradient by mov-
ing the underlying grid. In both cases the initial
grid was a regular triangular grid. The V-cycle
procedure completed in 25.9 seconds, while 500
iterations of the fine level Gauss-Seidel steepest
descent procedure took more than 1000 seconds.

It is essential for this approach that a coarse
grid representation of the objective function that
is to be minimized can be derived. In other words,
the change in the initial grid that is required to ob-
tain the optimal grid must be expressible as small
changes of vertex positions relative to the posi-
tions of neighbor vertices, plus larger changes of
positions of groups of vertices. This is possible
for applications where the objective is to find a
grid that is optimal for the approximation of a
function. We plan to extend this work to include
the case where an error estimate, and not the ac-
tual error, is to me minimized.
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